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MULTIFOCAL THREE DIMENSIONAL BOOTLACE LENSES

INTRODUCTION

It is well known that a two dimensional (parallel plate configuration) bootlace lens can be designed
to have more than one focal point [1-3]. Wide angle scanning capabilities of these lenses in two dimen-
sions is well established, being larger for higher numbers of focal points. Similarly, Ruze {4] has
demonstrated the wide-angle scanning capability of cylindrical metal plate lenses designed to have two
focal lines. Dion and Ricardi [5] reported on a three dimensional waveguide lens which has two perfect
focal points. The spherical-planar lens [6] is a three dimensional bootlace lens having a single focal
point. However, no three dimensional bootlace lens having more than one focal point has been
reported. It is the purpose here to report on three dimensional bootlace lenses having two, three and
four focal points. Equations for lens surfaces are obtained first for all three cases. An analysis is
included on aperture phase errors which shows that the scanning capatility of a lens, in the scan plane,
will increase as the number of focal points is increased. Computer simulation of radiation patterns for

different scan angles confirmed this.

BIFOCAL THREE DIMENSIONAL BOOTLACE LENS

Figure 1 shows the cross section of a bifocal lens in the XZ-plane which is also the scan plane.
The points Sy and §; are two conjugate foci which lie on: a straight line, parallel to the X-axis, in the XZ
plane. The feed side of the lens has a curved surface, where the pickup elements are placed. The other
side of the lens is a planar surface, where the radiating elements are placed. Flexible transmission lines
of length L are used in connecting pickup elements to the corresponding radiation elements. The line
51C makes an angle a with the negative Z-gxis. It is required that the main beam lie i UW-plane and
is directed at an angle —a to the W-axis when the feed is piaced at §;, and a to the W-axis when the

feed is at S,.
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Lens surfaces are obtained by using the following procedure. The fens cross section in the XZ-
plane is obtained first by treating the problem as if it is a two dimensional case with the specified
number of focal points. Then, the inner lens surface is obtained by rotating the inner lens cross section
with the feed line (straight line passing through the focal points) as the axis of rotation. The outer sur-
face is obtained by simply extending the outer cross section of the lens in positive and negative direc-
tions of the V-axis. If §; and S, are two foca! points for the lens cross section in XZ-piane, it is not
difficult to verify that they are also perfect focal points for the three dimensional lens obtained by using
the above procedure. The same procedure is applied later, to trifocal and quadrufocal lenses.

In what follows, the lens parameters are determined by using the fact that tne path length from

the focal point to any point on the corresponding wave front is a constant. Applying this condition to
the two rays emanating from S in Fig. 1, we have

SP+L+ Usina=F+L, (1)

where L, L, are the transmission line lengths at a general point P and the origin C respectively,
F= S]C, and

SP=~(X~=Fsina)’+ (Z + Fcosa)?. (2)
Similarly, appiying path length equality between a general ray and the ray passing through the ori-
gin, which emanates from S, one obtains

S;P+L - Usina=F+ L, (3)
where

S;P =~ (X + Fsina)l+ (Z + F cosa). 4)

The following relation can be obtained using equations (1) and (3):

S\P—-§,PP=—4 Usina (F+L,—- L) (5

From Egs. (2) and (4), one obtains
S|P - §;P=—4 FX sina. (6)
Since the left hand side terms of Eqs (5) and (6) are equal, the right hand side terms should be

equal. This will be satisfied if the transmission line lengths are equal, and the X-coordinate of a pickup
element is equal to the U-coordinate of the corresponding radiating element. Therefore we obtain

L=1L,and X = U. )

Eliminating L and U from (1) using (7) and substituting 5,P from (1) in (2) gives the inner lens
cross section in the XZ-plane and is given by

(F— Xsina)l= F14+ X2+ 22+ 2 FZ cosa —~ 2 FX sina. (8)
Rearranging the terms in Eq. (8), we have
Z '+ Xtcosla +2 FZ cosa = 0. 9)

As discussed earlier, the inner lens surface can be obtained by rotating the cross secton given by

Eq. (9) about the feed line (line passing through the two foci). Therefore, the equation for the inner
lens surface is given by

Z24+ X'costa + Y142 FZ cosa = 0. (10)
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The corresponding V coordinate of the radiating element can be obtained from V = Y and U-
coordinate is given by (7).

Equation (10) is the mathematical expression of a spheroid whose trace in the XZ-plane is given
by Eq. (9), which can be rewritten as

i, s 2

o X2 (Z+ Fcosa)?
= T =L i
-3 F? F? cos’ a (1
i i.e., an ellipse with foci at the two focal points S| and S, and the trace of Eq. (10) in the YZ-plane is
Y24+ (Z + F cosa)! = F?cos? a, (12) r

i.e., a circle of radius F, = F cos a.

~
T TN

It is noted that the Egs. (10), (11), and (12), representing the contour of the inner surface of the
lens, are the same as Eqs. (3), (4) and (5) of Dion and Ricardi [S]. However, for ihe lens being dis-
cussed here, *he outer surface is planar and the path lengths between the surfaces is a constant,
whereas, for the waveguide lens discussed by Dion and Ricardi {5], the outer surface is an ellipsoid
] (given by their Eq. (6)) and the path leugths between two surfaces are unequal.

PRI S

The bifocal lens is symmetrical wiili iespect to the YZ-plane and axially asymmetric. It may be
noted that, if the two foci are allowed to merge together on the axis of the lens, the angle « becomes
zero. Under this condition the lens becomes axially symmetric with the surface facing the feed becom-
' ing a scgment of a sphere centered at the feed while the opposite surface is still planar. This limiting
: case corresponds to the geometry of a spherical-planar lens discussed by Patton [6], which is a single
focus lens. As an example, Fig. 2 shows the bifocal lens cross section in the XZ-plane for a = 10°
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Fig. 2 — Cross section of a bifocal lens in XZ-plane, a = 10° ;
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i APERTURE PHASE ERRORS: BIFOCAL LENS

When a feed is placed at one of the focal points, the emitted phase-front corresponds to a con-
stant path-length (no phase errors). However, when the feed is displaced from those focal points to
scan the beam to other angles, the corresponding wavefront will have some phase errors. If the feed
displacement is confined to the line passing through the two focal points, the phase errors will be
independent of the Y-coordinate (hence V-coordinate) and depends only on the X-coordinate (or U-
coordinate) and the scan angle 8. Therefore, to know the aperture phase errors, one needs to find only
the phase errors on the aperture cross section in the UW plane. It is the purpose of this section to
study these errors for a bifocal lens and compare the results with that of a single focus lens. For this
purpose, the feed is assumed to be located at an arbitrary point R on a line which is parallel to the X-
axis and passes through the focal points, as shown in Fig. 1.

DA et

Let the line RC make an angle 6 with the negative Z-axis. Then, the main beam direction should
be at an angle § from the W-axis, as shown in Fig. 1. The coordinates of the feed point R are given by
(-Fcosatand, 0, — F cos a).

The path-length from the feed position R to the wavefront, for a ray passing through a point ‘
P(X, Z), is given by '

L,=RP+L,~ Usino, (13)
g and for the ray passing through the origin C, it is given by
: L.= RC+ L,. (14) 4
The path-length error is given by i
AL=1L,~ L = RP - RC - Usine. 19 |

From Fig. 1, one can obtain the values of RP and RC as
Y RP=~/(X + Fcosa tan6)* + (Z + F cos a)? (16)
and {4
RC = F cos a/cos 0. (7

Eliminating Z from (16) using (9) and then substituting RP and RC values in (15), the normal-
ized path length error is given by
AL

== = —ysing — —1—2— + wlsinfa + 20 ang, (18)
F, cos 0 cos”

where ¥ = U/F, and F, = Fcosa.

, . ) . L
For comparison, the path-length error for a single focus lens can be obtained from (18) by assum-
ing « = 0 and is given by
AL, 1 \/ ]
—— =—yusinb — + + 2u tan 0. (19)
I, u s cos 0 cos? 6

Figure 3 shows normalized patli length errors for a bifocal (« = 10°) and the single focus lens as a
function of normalized apenute 4. From Fig. 3, it may be noted that, when the normalized aperture is
limited to 0.5, the maximurn error occurs at 4 = —0.5 for any given scan angle 8. Figurc 4 shows
this maximum path error on the aperture (v = —0.5) vs scan angle. For single focus lens, the magni-
tude of the path-length error increases as the scan angle is increased. For bifocal lens, the path error
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Fig. 3 — Path length errors in XZ-plane
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will be maximum for zero scan angle and decreases monotonicaily with the increase in scan angle,
reaching zero error at the scan angle «. Then, the magnitude of the path error increases monotonicaily
for scan angles greater than «. From Fig. 4 it may be noted that for & = 10° the bifocal lens wiil have
normalized path errors less than .004 over a scanning range of +14° whereas the single focus lens can
only be scanned to slightly less than +10° Therefore, some 40% more scanning range is possible with
bifocal lens compared to a single focus lens. Similar conclusion can be reached for the case of a = 5°,
shown in Fig. 4. As noted before, for scan angles less than «, maximum path error occurs at zero scan
angle. Figure S shows this maximum path error vs «. This curve wiil be useful in choosing o for a
specified maximum phase (or path length) error with the understanding that the maximum scan angle
is approximately equal to 1.4 « for the specified phase error.

008 —

.003 (—

/

L | 1 | J
0 2 4 6 8 10
o IN DEGREES
Fig. § — Peak path length error vs « for bilocal tens
with (Fy/ D} = 1

001

MAXIMUM PATH LENGTH ERROR/Fg

TRIFOCAL THREE DIMENSIONAL BOOTLACE LENS

It was shown that a three dimensional bootlace lens having two perfect focal points can be used as
a multiple beam antenna or can be used to scan more beamwidths compared 1o a lens having only a sin-
gle focus. However, its scanning capability is still limited. It will be shown that a three dimensional
bootlace lens with three perfect focal points has a wider angle scanning capability compared to a bilocal
lens.

The trifocal lens design differs from the bifocal model in that the corresponding points on the two
lens contours (X and U components in Fig. 6) are not equidistant from the YZ-plane. This additional
degree of freedom in design permits specification of a third focal point. However, to be a perfect focal

point in three dimensions, the location of the third focal point should be on a line joining the pair of

conjugate foci S} and S,, and symmetry condition dictates it to be on the axis of symmetry, as shown in
Fig. 6.

F.gure 6 shows the cross section of a trifocal lens in the XZ-plane. The points Sy, S, und S; are
perfect focal points for radiation at angles 0, --a, and « to the W-axis, respectively. They are located,
in the XZ-plane, on a line parallel to the X-axis. The coordinates of these focal points are given by (0,
0, —Fy), (Fsina, 0, —F cos a), and (—F sina, 0, —F cos a), respectively, relative to the origin C.
Considering a central ray passing through the origin C, and a gencral ray passing through the point
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: 1
. .,
P (X, Z), both originating from focal point S}, the condition for optical path length equality gives the 3
following relation: ) J
SP+ L+ Usina=F+ Ly, (20)
where .
SiP=~(X = Fsina)+ (Z + F cosa)?, Q1
L = Transmission line length at a general point P, :if
and Ly = Transmission line length at the origin C. :
: Similarly, applying the condition for path length equality of central and general rays originating i
from the focal points §; and S, one obtains
S;P+L—-Usina=F+Lg, (22)
SoP + L = Fy+ Ly, (23) 1
where H
: 5P =~ (X + Fsina) + (Z + F cos a)?, (24) "‘
g and 3
: SoP =~ X1+ (Z + FpL. (25) .
4
3 From Egs. (20) and (22) we have ' i
3 ——— —_— |
3 5;P'— 5P =4 Usina(F+ Ly— L), (26) B
1 and from Egs. (21) and (24) we obtain h
5, — 5P =4 FX sina. (7 &
g Excluding the degenerate case of o« = 0 (in that case S, and S, merge into a single point on axis; |
consequently, there will be less than three focal points), and equating the right hand sides of Eqgs. (26) i
and (27) one obtains
FX=U(F+L,- L). (28)
Equation (28) gives a relation between X, Uand L — L,. An equation relating U and L — L, can
be obtained as follows. Substituting the vaiue of S;P from (20) in (21) and eliminating X (but not X?)
using (28), one obtains
7 L i
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£

: X2+ 224+ 2ZFcosa=2F (L,- L) + (L, - L) + Ulsin’a. (29) {
: ]
Similarly, substituting S, P from (23) in (25) we get j

; X?+ 2242 ZF = 2 F, (L,~ L) + (L, - L), (30) %
The left hand sides of (29) and (30) are equal because F, = Fcos «. So, equating the right hand ’

sides gives an equation relating U and L — L, as 9

! U 2
L—L,= T COSs (a/2). (31)

Equation (30) represents the cross section in the XZ-plane of the inner surface of the trifocal lens
with X, Uand /. ~— L, related as shown in (28) and (31).

For specified values of design parameters «, F,, and the element location U on the radiating sur-
face, Eq. (31) can be used to find the corresponding I — L,. Then, the corresponding value of X can
be found by substituting the known values of a, F,, U, and L — L, in (28). Finally, the corresponding
Z coordinate of the inner lens surface can be found from (30), knowing X, F, and L — L,. By assum-
ing different values for U, complete inner surface cross section in XZ-plane can be obtained. As an
. example, Fig. 7 shows the cross section of a trifocal lens for « = 15°. The three dimensional inner
E surface of the lens can be obtained by rotating this cross section about the line on which the focal
points are located. This completes the design procedure of the lens.

X
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Requirements on the scanning range, allowable aperture phase errors, and the aperture size will
determine what values should be chosen for design parameters @ and F,. [n this regard, the analysis on
aperture phase errors, which is discussed in the next section, will be useful.
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Fig. 7 — Cross section of a trifocal lens in XZ-plane, « = 15°
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APERTURE PHASE ERRCRS: TRIFOCAL LENS

When a feed is displaced from the focal points to scan the beam to other angles, there will be
some phase errors on the aperture. It is the purpose of this section to study these errors for trifocal
lets. Let R be an arbiirary feed position on the feed line {a iine passing through the focal points) such
ihat the main beam direction is at an angle 8 to the Z-axis, as shown in Fig. 6. Similar to a bifocal
lens, if the feed location is confined to the feed line, the aperture phase errors are independent of the
coordinate / and depend only on U and 8. Therefore, to know the aperture phase errors, one needs (¢
find only the phase 2rrors on the aperture cross section in the UW-plane,

The coordinates of the feed point R are given by (— F, tan 8, 0, — F,). The path length from
feed point R to the phase front, for a general ray passing through the point P(X, O, Z) is given by

L,=RP+L - Usiné. (32)

Similarly, the path length of the central ray, passing through the origin C, is given by
L.= RC+ L, 33)
Therefore, the path length error is

AL=L,— L .= RP~RC-Using + L — L,. (34)

From Fig. 6, one can obtain values of RP and RC as

RP = /(X + F,an0)’ + (Z + F,)? (35)

aid

RC = F,[cos¥. (36)

Eliminating Z from (35) using (30), one obtains
RP = [/(F,/cos8)? + 2F, (L,— L) + (L= L)Y+ 2 X F, tan 8. 37N

Substituting RP and RC values from (36) and (37) in (34) and expressing L — L, and X in terms

of U using (31) and (28), it can be shown that the normalized path length error is given by
AL
f,

= B — using — (/cos @) +

V(1/cos8)2 =2 B +B*+2utand (1 — Bcosa), (38)
where

u=U/F, and B = u? cos a cos’ (a/2).

Figure 8 shows normalized path length errors for trifocal lens as a function of aperture dimension
u, fora = 15° It may be noted that, similar to bifocal lens, the maximum error occurs for ¢ = —0.5
for any given scan angle when ...e aperture is limited to a range of 4 = +0.5. However, the path
length error at ¥ = 0.5 has an opposite sign compared to that at ¥ = —0.5. Therefore. the maximum
phase excursion on the aperture is proportional tn the difference of path length errors at w = —0.5 and
u = 0.5. This total maximum path length error is plotied as a function of scan angle in Fig. 9. For
scan angles less than o (15° in the example), the peak error occurred for a scan angle of about 9°. For
scan angles greater than «, the error increases with the increase in scan angle. It may be noted from
Fig. 9 that, for scan angles in the range of %=17°, path length errors are less than .0011, whereas the
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Fig. 9 — Path length error vs scan angle lor a
trifocal lens (w = 15°)

single focus and bifocal lenses can be scanned to only £5° and +7° respectively. From Fig. 9, it was
noted that the peak error occurs at a scan angle between 0 and «. This peak error increases with the
increase in a. Figurs 10 shows this relationship. This curve will be useful in choosing a for a specified
peak phase (or path length) error. Once a is known, the scanning range, which is slightly larger than
+a, can be found for specified phase errors.

QUADRUFOCAL THREE DIMENSIC.i1AL BOOTLACE LENS

Quadrufocal lens design differs from that of the trifocal case in that the outer surface of the lens
is not constrained to a planar surface. This additional degree of freedom in design permits specification
of four, rather than ju= three focal poinis. Lens symmetry dictates that those four focal points form
two conjugate pairs. 11 shows ti: lens cross section in XZ-plane. S, Sy, S, and §; are four
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R St

focal points for radiation at angles ~a |, a;, —a3, and «; to the W-axis respectively. The inner lens sur-
face and locations of focal points are expressed in X, ¥, and Z coordinates. The coordinates of the
outer lens surface are expressed in U, V, and W. As discussed earlier with other lenses, the three
dimensional inner surface of the lens can be obtained by rotating the lens cross section in .iZ-plane

about the feed line (the line on which the focal points are located). The outer surface of the lens will
be shown to be a part of a circular cylinder.

Y

oA 5

Applying the path length equality from the focal point S|, to the corresponding wave front yields

SP+ L~ Wcosa,+ Usina;= F, + *,, (39) 1

where 1} |
SiP=-/(X = F sina)?+ (Z + F, cosa,)?, (40) 4 13

1 é j
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and
F| = :STZ:‘.
Similar to (39) and (40), the following relations can be obtained for focal points §), S,, and Sy 7
StP+ L~ Wecosa,— Usina, = F, + L,, (41)
~§:‘5-\/()q(+1"|sinoll)2+(Z-i-F.cosoz.)2 (CY))] y-}
= X
S;P+ L~ Wcosa;+ Usina;= F,+ L, (43) ‘i
!
= 1
v S;P = (X = Fysina)?+(Z + Fycosay)?, 44 g
) §§—P+L—Wcosaz—Usina,-F,+Lo, (45) ‘
and

S:P=~/(X + Fysina? + (Z + F; cos ay)?, (46)
2 .

where Fy = §;C.
From (39) and (41) we obtain
SP—5P =4(F+L,~L+Wcosay) Usina. 47

Similarly, from (40) and (42) we have
SiP'~ 5P =4 F, X sina, (48)

Excluding the case of «; = O (in that case S, and S; merge and becomes a special case having
less than four focal points, which is already discussed), it is evident that right hand sides of (47) and
(48) should be equal and the following relation is obtained:

X~ (U/F) (Fi+L,~ L+ Wcosa,). (49)
; A similar result to (49) can be obtained by considering Eqs. (43) to (46), instead of (39) to (42),
E and is given below: .

X=(U/F) (F;+ L,— L + W cosa,). (50)

Equating the right hand sides of (49) and (50), noting that Fy = F, cos a, = F, cos a,, the fol-
lowing relation can be obtained:

L~ Ly= Wi(cosa, + cosa,). s .

1 Equation (51) can be used to find W, knowing L — L or vice versa for given values of a and «,.
'E A relationship between Uand W o: L~ Lgis required to finish the lens design. This is obtained in the
following manner.

Substituting the value of §,P form (39) in (40), squaring on both sides and eliminating X (but
t not X?) using (49), one obtains

X2+ Z2+2ZF cosa,= (L~ L)+ Ulsinfa; + Wlcos?a, ~2F (L — Ly
+2F Wceosa,—~ 2(L — Ly Wecosa,. 52)
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Using the same procedure, an equation which is similar to (52) and corresponds to second conju- ]
gate pair of focal points can be obiained as ]

X2+ 2 4+ 2Z Fycosay= (L — 1o)? + Ulsina; + W2cos?ay,~ 2 F)(L — Ly

: i
, +2F; Wcosay;— 2(L — Lg) W cos ¢ . (53) Bk
! {
f
| : Knowing that F, cos a; =~ F; cos «; = F,, it may be noted that left hand sides of (52) and (53) ;
' are equal. Equating right hand sides of (52) and (53), eliminating L — Lg using (51) and simplifying,
it can be shown that 1
U + (W~ Rp?= R{, (54) ]
: where 1

Ro= Fy/cos ay cos a;.

Equation (54) defines the cross section, in the UW-plane of the outer surface of the lens. The A
cross section is an arc of a circle of radius Ry with a center at W = R,. Therefore, the outer surface of {
the lens is a part of a circular cylinder.

? An equation for the inner lens cross section is obtained using the following procedure. Eliminat-
‘ ing L-- Lyand Win (52) using (51) and (54) one obtains

X2+ 224 2Z Fg= U¥(1 - cos? a; — cos? ay). (55)

) It can be shown, using (49), (51), and (54), that U and X are related as

U*— URE + X*R§ = 0, (56)
or
U? = (Ry/2) (Ry — [ (R — 4X9)), (57)

where R, is defined earlier in (54).

Substituting the value of U? from (57) in (55), one obtains the cross section in XZ-plane of the
inner lens surface as

X2+ (Z + Fg)m F§ + (Ry/2) (Rg— /(¢ — 4XH))(1 — cos? a) — cos? ). (58)
Therefore, the inner lens surface is given by

X2+ Y24 (Z+ i) = F§ + (RYD (Ry— (R — 4XD)) (1 — cos? a; — cos?ajz).  (59)

It is possible to eliminate the radical (square root} in (59) and obtain a fourth order equation for
the inner surface of the lens. However, it will not be done here since (59) in its present form shows
that for any given value of X, the inner surface is represented by a circular arc. For given values of Fj,
a, a3, and the element location U on the radiating surface, corresponding values of W and X can be
found using (54) and (56). The corresponding value Z can be found from (58), knowing X, Fy, a, and
a;. Transmission line length L — Lj can be found from (51), knowing W, a, and a,. By assuming
different values for U, complete inner surface cross section in the XZ-plane and the outer surface cross
section in the UW-plane can be obtained. As an example, Fig. 12 shows the cross section of a qua-
drufocal lens with a; = 10°and a; = 25°% The three dimensional inner surface of the lens can be
¢btained by rotating the cross section in XZ-plane about the line on which the focal points are located.
The complcte outer surface of the lens can be obtained by extending its UW-plane cross section
towards the positive and ncgative V-axis. This completes the design procedure for the quadrufocal lens.
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Fig. 12 — Cross seclion of & quadrufocal lens with ay = 10° and oy = 25°

Requirements on the scanning range, allowable aperture phase errors, and the aperture size will
determine what values should be chosen for design parameters F;, «,, and a,. In this regard, the
analysis on aperture phase errors, which is discussed in the next section, will be useful.

APERTURE PHASE ERRORS: QUADRUFOCAL LENS

Using a procedure quite similar to that used for bifocal and trifocal lenses, it can be shown that
the normalized path-length error in the UW-plane, when the beam is scanned to an angle 8 by placing a
feed at R as in Fig. 11, is given by

I
—A—‘i-d—usin0- w cos § — (1/cos 9)

Fo

++/(1/cos 8)? + u*(1 — cos? a; — cos? a3) + 2 x tan @, (60)

where d = L—ﬂ,u- —, W= H andx = L.

Fo Fy Fo Fy
For a given value of U, corresponding values of W, L — L, and X can be found using (54), (51)
and (56). Substituting these values in (60), the path length error can be found for specified values of
Fy, ay, a;and 8. Figure 13 shows normalized path length errors for the quadrufocal lens as a function
of normalized aperture u, and for different scan angles whena; = 11°and «; = 25° It may be noted,
similar to the bifocal lens, that the maximum error occurs for w = —0.5 for any given scan angle when
the aperture width is limited to 4 = £0.5. Figure 14 shows the maximum error as a function of posi-
tive scan angles for a; = 25°and for different values of ;. Fora, = 10 the peak phase error (for
angles below a;) occurs at an angle between oy and «;. The peak valuc at zero degree scan angle is
smaller than the peak value betwren o and a;. For a; = 11° those two peak values are approxi-
mately equal. For a; = 12° the peak value at zero degree scan angle is larger than the peak between
a; and a;. These observations point to a fact that there is an optimum value of o for a given value of
«; which makes those two peak phase errors equal and less than the peak error for any other value of
a;. Attempts to determine analytically this optimum value of « for a given a, were not successful.
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However, Mr. Paul Shelion suggested a method* of determining the approximate optimum value for «
and it is given by a; = a, (383/924). Then, the corresponding peak phase error can be obtained by
substituting 8 = 0 in (60). Then, a curve, similar to Figs. 5 and 10, showing the peak error increasing
with angle a3, can be obtained as shown in Fig. 15. Therefore, for specified peak phase error, a; and
the corresponding optimum value of a; can be found. Once a; is known, the scanning range, which is

slightly larger than *a, can be found using the method suggested by Mr. Paul Shelton. Using the ;'
' approximate relation between the number of foci and rmaxiusum scan angle, as suggested by Mr. Shel- X
ton, and the results of Figs. S, 10, and 15 one can obtain curves relaling maximum scan angle for ! !
specified maximum path length error for all the lenses as shown in Fig. 15a. From that figure it is evi- K ’
dent that for & given maximum path-length error, a lens with a larger number cf focal points can be y
scanned to larger angles. ' 1
0.002 — %
, o q
v 4
¢ )
5 o ,
] £ 00015~
3 w
i E
0]
4
Y 0001
&
a.
2 0.0005 |—
2
] 3
0 5 10 15 20 25 30

7 IN DEGREES
Fig. 15 — Maximum path ieagth error vs a, for guadrufocal lens with (Fy/D) = 1

p—

*Mr. Paul Shelton of NRL suggested the following analysis which can be used to find an approximate optimum value of a, for an
assumed value of a; for quadrufocal lenses. His analysis can also be used in determining the maximum scan angle for a given a

in bifocal and trifocal Jenses and for a given a; in quadrufocal lenses.

*For the ruultifocal configuration, assuming that the phase error function is a polynomial in the scan angle or feed
position, then the optimum polynomial is the Tchebycheff, T, (s) = cos (n cos™! §), where 1 is the number of fuci and
s is the scan ungle or feed position. Thus, the focus tocations relative to maximum scan are given by s = cos (w/2n),
cos (37/2n), etc. For n =2, 5 = %0707, for n = 3, 5 = 0, ::0.866; and for n = 4, s = £0.383, £0.924."

N SR

Using the above approximate analysis, the relations between maximum scan angle 6., and feed positions (defined by the
parameter «) are given below for lenses with different foci.

a = 0.707 6, for bifocal lens (1 = 2)
a = 0.866 6,,,, for trifocal letis (n = 3)

- 0.383 Ow and

e Ak il |

for quadrufocal lens (n = 4).
a, ™ 0924 9,,,.,

The same Tchebychefl polynomial approximation can also be used in finding the angle 0., at which the puth-length error is
muaxirauni by finding the 6 value for which 7,,(0) is maximum. Knowing 6,., one can find maximum path-length errors for bi-
focal and trifocal lenses using Egs. «i8) and (38) for different values of «. It was verified that there is a very close agreement
betv/een the results obtained by this approximate method and those shown in Figs. § and 10.

16




T ————

NRL REPORT 8465

So far, it is assumcd that the scanning is accomplished by confining the feed to a straight line
passing through the focal points. Only a lindited investigation has been made on the scanning capability
in the other planes. The results show tha! in the orthogonal plane (VW-plane) the scanning capability
of multifocal lenses is limited and somewhat less than that of a single focus lens. Therefore, multifocal
lenses are useful » here the required scanning in one plane far exceeds that of the orthogonal plane [7].

§
1

INGLE FOCUS LENS
s ¢ NS BIFOCAL LENS
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TRIFOCAL LENS

8

QUA“DRUFOCAI

MAXIMUM PATH LENGTh ERROR/D
=)
g
{

0 | l l
0 5 10 15 20 25 30

MAXIMUM SCAN ANGLE IN DEGREES

Fig. 15a — Maximum scan angle vs maximum path length error for different lenses

RADIATION PATTERNS

Computer simulation is used in obtaining radiation patterns for lenses discussed in this report. In
addition to their geometries, effects of feed element pattern and pickup elements patterns are also
included. Appendix A contains a detailed discussion on computer simulation. Radiation patterns were
computed for lenses with radiating aperture of 60 A by 60 A and (F,/D) = 1. The inter-element spac-
ing is assumed to be A/2. Figure 16 shows radiation patterns of a bifocal lens with a = 5°. From ear-
lier discussion on bifocal lens, it may be recalled that peak phase error occurs at zero scan angie and the
scanning range is =1.4 «. Therefore, patterns shown in Fig. 16 are the worst possible patterns, i.e.,
one at zero scan angle and the other at the scan limit. The corresponding peak error for & = 5°can be
found from Fig. § and is given by .06 X for 60 A aperture wilth and (F,/D) = 1. For a 10 dB ampli-
tude taper on the aperture, one would expect the sidelobes to be about 21 dB below the mainlobe peak,
if there are no phase errors. With the above stated errors, which are quite small, it may be seen from
Fig. 16 that their effect on the sidelobes is negligible. Figure 17 shows two worst patterns in the scan
range corresponding to « = 7.5° The corresponding peak error, from Fig, 5, is .228 A (.0038 x 60A).
This error is not negligible and its effect on the radiation patterns can be seen from Fig. 17, ie.,
shoulder formation.

Figurc 18 shows radiation patterns for a trifocal lens with a = 18°. The feed element pattern is
chosen such that the aperture edges have a 10 dB amplitude taper when the feed is located on the axis
(zero degree scan). From the eerlier discussion on trifocal lenses it may be noted that there are no
phase errors for the on axis beam and for the off axis beam at the angle a (18° in the example). As is
nioted from Fig. 18, the sidelobes are down by 21 dB for the on axis beam which is what one expects
for a 10 dB amplitude taper. However, the sidelobes are higher for the 18° off axis beam. This is due
.0 the decrease in amplitude taper on the aperture, when the feed is moved to produce off-axis beams.
Therefore, the sidelobes can only be reduced by increasing the feed size for off-axis beams. For a =
18°, the peak phase error for trifocal lenses may be obtained from Fig. 10 and is given by 0.1032 A
(0.00172 x 60A), which occurs for a scan angle of about 11°. The effect of phase errors can be seen
from patterns at scan angles of 11° and 15°. Sidelobes are unsymmetrical, being higher on one side and
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Fig. 18 — Scan plane patterns of trifocal lens with a = 18°

lower on the other. Change in amplitude taper may also havc some effect on the sidelobes. The value
of o = 18° was purposely chosen to see the effects of phase errors. By choosing a smaller value for a
(say 15°) the effect of phase errors can be reduced. However, it may be seen that the scanning range
of a trifocal lens is at least twice as much as that of a bifocal lens.

Figure 19 shows the pattern of a trifocal lens in the orthogonal plane (¢-plane) when the beam is

scanned to 11° in @-plane. The pattern is symmetric and sidelobes are much lower compared to those
in the scan plane.
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Figure 20 shows two scan plane patterns of a quadrufocal iens (with a) = 11° and a; = 25°), one
on boresight and the other at 20° off axis. As can be seen from I'ig. 14, the peak error on the aperture
for these beams is 0.042 A (0.007 x 60\). Since this is « small error, it has negligible effect, as may be
seen from the on-axis beam. For other beams in + 27° range, peak aperture errors are smaller. The
feed pattern used in computing these patterns is such that the on-uxis beam has a 10 dB amplitude
taper. However, using the same feed for off-axis beam gives slightly asymmetric amplitude distribution
with less than 10 dB taper. This is the reason for sidelobes being higher for off-axis beam compared to
on-axis beam. This indicates that a larger feed should be used for larger scan angles to obtain the same
amplitude taper. Figure 21 shows patterns at 20° and 27° off-axis when feed patterns are chosen to
obtain a 10 dB taper. Sidelobes are at —20 dB level, instead of —21 dB one would expect for a 10 dB

amplitude taper.
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Fig. 20 ~ Scan plane patterns ol quadrufocal lens with
feed patiern independent of scan angle
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CONCLUSIONS

Three dimensional bootlace lenses having two, three and four perfect focal points are proposed.
Design equations are obtained for inner (pickup) and outer (radiating) surfaces for all threv lenses.
Aperture phase errors are analyzed when a feed s moved to scan the beam to different angles in a scan
plane. The results of the analysis showed that the scanning capability of a lens increased with the
increase in number of focal points. Computer simulation of radiation patterns are also presented for all
three lenses. These results also show that a lens with a higher number of focal points can be scanned
to larger angles. Our limited investigation also showed that the scanning capability of multifocal lenses
is limited in the orthogonal plane and somewhat less than that of a single focus lens. Therefore, multi-

focal lenses are useful where the required scanning in one plane far exceeds that of the orthogonal
plane.
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Appendix
COMPUTATION OF RADIATION PATTERNS

As discussed in the text, let the radiating surface be specified in U, V, W coordinates. Since the
cross section of the radiating surface is independent of the coordinate V, an element position on 4 radi-
«..ing surface can be expressed as (U, V,, W,,), where m takes on values from 1 to M and u takes on
values from 1 to N. Therefore, there are a total of MN elements. Then, the radiation pattern can be
expressed as

d X i%\’f- (U, sinf cosd + 1, sintising + W, cost +£,,) AD

£, d)) = 2 2 Amn(f

m=\ =1

Where 0, ¢ are the polar coordinates of a field point,
A, is the amplitude excitation of the element at (U,,, V,, W,),

and
&, is the phase excitation of the element at {U,,, V,, W,,) which is independent of ¥, or n.

Results obtained from phase error analysis in the text can be used to find the appropriate expres-
sions for &, for all three lenses and will be given later. The procedure and formulation to find ampli-
tude excitation 4, . is similar for all three lenses and is discussed below.

Fi,ure Al shows the geometry used in determining A,,,. Let S be the feed position such that the
main bzam is directed at an angle 6y to the W axis. The position of an element at P on the pickup sur-
face is represented by (X,,, Yun Zns), and is connected by transmission line to a corresponding cle-
ment Py (U,,, V,, W,) on the radiating surface. It is assumed that the feed element is tilted such that
its pattern maximum is in the direction of SQ. Similarly, the pickup element is placed such that its pat-
tern maximum is in the direction of PG. It is now evident that 4,, depends on the feed pattern,
pickup element pattern, angle §,,,, angle 6, and the distance SP. Therefore, 4,, may be expressed as

Amn = K;{;Il Kri:n Kr‘rlm- (A2)
where K7, is feed element pattern factor,
Kb, is pickup element pattern factor,

and K¢, is the distance difference factor.

For computational purposes, the feed element pattern is assumed as a power of a cosine function
and is given by

Ky = cos Mo (8,,). (A3)

where N, is an arbitrary constant 1o be chosen to give proper amplitude taper. The pickup element pat-
tern is assumed to be of the form

. |78 .
sin [T sin 0,,,,,]

(A4)

KI/I)HI = B
m .
[T sin ¢ ,,,,.]
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The distance difference factor is given by (see Fig. Al)

ki =30 _ _F 1 (AS)
SP cos8, \f(X,, + F,an0,)?+ Y, +(Z,, + F,)?

To use Egs. (A3) and (A4) one needs to know &, and 6,,,. Referring to Fig. Al one can show

oS Bpn) = agy ay + vy V5 (A6)

COS (O ppy) = aps atpg + B Bpg + Vs Vg (AT)

ag, = — ay = (F, tan 8, + X,.,)/ dy,,

Bps = = Yl dyp,

Yo == Vps = (Fo + Zp,)/ d,
ag, = sin @,

Ysg = €08 §,,

Qpg = — Kpnl dg,

Bpg = = Youl dg.

Yog ™~ (Fo + Zmn)/d ,
dy, = Fy/cos 6,,
dy =~/ Xy + F, 058,02 + Y2, + (Z,, + F,)%,

dp =~/ X2 + Y1, + (Z, + F,)2
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The above formulation is common for all three lenses. They are used with the following relations
obtained by using the information given in the text tor individual lenses. In what follows, element

coordinates U,,, V¥, on the radiating aperture, F,, aperture width D, a, «,, and a, are assumed known
or used as a variable parameter.

BIFOCAL LENS

Wy=10
Ko = Uy
Yon = Va
Zyn == Fy +\/F}~ X2, cos’a — Y2,
Em = (F,/c088,) — [ (F,/cos 6,) + X2, sinfa + 2 X, F, tan§,.
TRIFOCAL LENS
W, =0

an - Um 1- (Um/Fo)z COS2 o COS2 %

Yon =V,

Zpy = — F, +[IF, = (U2/F,) cos a cos? (a/)]* = X2, — Y2,
Em = (F,/c0s8,) — T —/(F,/cos8,)2 - 2T F, + T2+ E
where T = U2 cos a cos? (a/2)/F,
and £=2 U, tan 8, (F, - T cosa).

QUADRUFOCAL LENS
Xy = Up N1 = (Ul F,)? cos? a; cos? ay

X,
W, = F, [l — =221/ cos a; o8 a;

Un

L, = W, (cosa; + cos aj)
Yy = V,
Zon = — F, +\F2+ U2 (1 ~ cos? a; — cos? az) — X2, — Y2,
&= (F,/cos8,) - L, —
N (F)/cos8,) + UL (1 - cos? a; — cos?ap) + 2 X, F, tan @,.
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